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ABSTRACT: The detergency effect has been examined for a 
series of technical nonionic surfactants with the use of statisti- 
cal experimental designs and revealed a plateau in each of the 
response surfaces obtained. The surfactant concentrations and 
washing temperatures, needed to reach the edge of each deter- 
gency effect plateau, were also determined. These conditions, 
which define the edge of the plateau, could be well modeled 
from the physicochemical properties of the suffactants with the 
use of partial least squares of latent structures. It was also possi- 
ble to point out the importance of the different physicochemi- 
cal properties. If an experimental design has been utilized, the 
detergency effect of a nonionic suffactant can be modeled from 
multiple linear regression as a function of suffactant concentra- 
tion, washing time, and washing temperature. We have shown 
how these regression coefficients can be modeled from the 
physicochemical properties of the surfactants. Partial least 
squares of latent structures were used to estimate these models 
as well. We also demonstrated how these models can be used 
to predict the regression coefficients of a suffactant not included 
in the model estimations. The resultant regression coefficients 
can then be used to predict the detergency effects of this surfac- 
tant at different variable settings. The detergency effects thus 
obtained are in good agreement with measured data acquired 
under corresponding conditions. 
IAOCS 73, 863-875 (1996). 
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Recently, we investigated the detergency performance of 
some technical nonionic surfactants (1,2). In these investiga- 
tions, the surfactant concentration, washing time, and wash- 
ing temperature were altered according to statistical experi- 
mental design schemes. The relationships between the ob- 
served detergency performance and the studied variables 
were modeled by multiple linear regression (MLR) (1) and 
partial least squares (PLS) of latent structures (2). MLR was 
used to evaluate the designed series one by one, whereas in 
the PLS study, two or three designed series were combined 
for each surfactant and modeled together. 

*To whom correspondence should be addressed at Akzo Nobel Surface 
Chemistry AB, S-44485 Stenungslund, Sweden. 

The next step in systematic investigations of this type is to 
answer the question of whether it is possible to predict the 
performance of a new surfactant when only its physicochem- 
ical data are known. In other related areas, such as quantita- 
tive-structure-activity relationship (QSAR) studies, it has 
proven possible to predict the behavior of a new compound 
with a model based on the properties of other chemicals (3). 
The chemicals have to be closely related, and a sufficiently 
good relation has to be found between the physicochemical 
data and the measured responses for the chemicals. 

The work presented here is divided into three parts. In the 
first part, the detergency performance of three surfactants was 
investigated with different central composite circumscribed 
(CCC) designs. These designs differed in variable settings, 
and the investigations in which they were employed will be 
denoted F I '  and F3'. In the second part, the results from the 
F I '  and F3' investigations are combined with results from 
previous investigations (1,2), and models are derived that re- 
late the physicochemical data for eight nonionic surfactants 
to their optimal washing conditions. The obtained quantita- 
t ive-structure-effect relationship (QSER) models are then 
used to predict the optimal washing conditions for a ninth sur- 
factant (validation object) on the basis of the physicochemi- 
cal data for the validation object. In the third part, QSER 
models are presented that relate the MLR coefficients of the 
response surface models to the physicochemical properties of 
eight nonionic surfactants. In the same way as in part two, we 
show that it is possible to predict the MLR coefficients of an- 
other surfactant (validation object) from these models and the 
physicochemical data for the validation object. 

The predicted MLR coefficients were used to predict the 
detergency effect of the validation object (surfactant) at cer- 
tain surfactant concentrations, washing times, and washing 
temperatures. These predicted detergency effects were then 
compared to actual washing experiment data. These QSER 
models were estimated with the use of PLS of latent struc- 
tures (4). 

EXPERIMENTAL PROCEDURES 

The detergency performance of the surfactants was measured 
as the percentage of nonpolar fatty soil removed from cot- 
ton/polyester cloth (35:65). The detergency effects reported 
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are mean values of four replicates. The nonpolar soil con- 
sisted of C14 labelled triolein, and the amount of soil on the 
cloth was determined before and after washing by scintilla- 
tion measurements. 

The methods used for soiling, washing, and scintillation 
measurements are described in detail elsewhere (1). The 
structures of the examined surfactants are described in 
Table 1, and their physicochemical properties are discussed 
in Reference 5, and are also reported in Table 2. 

The detergency experiments were performed according to 
statistical experimental design. The utilized designs were the 
so-called CCC statistical designs in three variables with four 
central points. The examined variables were the surfactant 
concentration, the washing time, and the washing tempera- 
ture. The principles of CCC design have been described by 
Box e t  al. (6). A schematic layout of a CCC design in three 
variables is depicted in Figure 1, and the coded variable set- 
tings for each experiment are shown in Table 3. 

The aim of an experimental design is to spread the trials 
over the experimental domain in such a way that it is possible 
to estimate a response surface model (RSM) for the deter- 
gency performance of the examined surfactant. In such mod- 
els, the detergency effect (Yobs) is expressed as a second-order 
polynomial function of the examined variables (Eq. 1). If an 
experimental design has been utilized, the polynomial func- 
tion (Eq. 1) can be estimated with the use of MLR: 

Y o b s  = bo + blX l + b2x 2 + b3x 3 + bllX 2 + b22 X2 + b33 X2 

+ bl2XlX2 + bl3XlX 3 + b23x2x 3 + e [1] 

The coefficient b 0 is a constant, bl, b 2, and b 3 express the 
main effects of each variable, x 1 (surfactant concentration), 
x 2 (washing time), and x 3 (washing temperature), b H, b22, and 
b33 reveal if any of the variables give a maximum/minimum 
in the response, and b]2, b]3, and b23 show the interaction ef- 
fects between the variables. The difference between the ob- 

TABLE 1 
Description of the Examined Nonionic Surfactants 

Description 
of the hydrophobic 

Surfactant part of the surfactant a 

number Source Formula A B C D E F 

2 Akzo Nobel b C13EO8 X 
5 Akzo Nobel C12-14EO6 X X 
8 Akzo Nobel C11EO5 X X 
9 Akzo Nobel C12-15EO7 X X X 

11 Akzo Nobel C9-11EO5 X X X 
18 Akzo Nobel C18EO7 X 
30 Hills c C12-14EO6 X X 
31 HLils C l lEO5  X X 
33 Hiils C13EO8 X 
39 Akzo Nobel C12EO8.5 X 

aA : straight carbon chain; B = mixture of carbon chainlengths; C = small 
portion of branched chains; D = branched; E = unsaturation in carbon chain; 
F = twin-branched carbon chain. 
bStenungslund, Sweden. 
CLund, Sweden. 
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FIG. 1. A schematic layout of a central composite circumscribed design 
in three variables. 

served response (Yobs) and the response calculated from the 
RSM (Ycalc) is the residual (e). The models are derived in such 
a way as to minimize the residuals (e). 

The ability of a model to describe the data from which it is 
calculated is expressed in terms of explained variance (R 2) 
and the predictive capacity (Q2) (7). The former indicates 
how much of the variance in the observed data is explained 
by the model. This is done by comparing the squared sum of 
the observed values (Yobs) with the squared sum of the values 
calculated by the final model (Ycalc) (Eq. 2). Q2 is estimated 
by cross-validation (8), which involves excluding each obser- 
vation from the model-building calculations once, and only 
once. Prediction errors for the excluded observations are esti- 
mated from models based on the reduced data set. The sum 
of the squared differences between the observed values (Yobs) 
and those calculated by cross-validation (Ycv) are compared 
to the squared sum of the observed values (Eq. 3). The closer 

TABLE 3 
The Layout in Design Units of a Central Composite Circumscribed 
Design in Three Variables with Four Central Points a 

Trial Random Concentration Time Temperature 
number order level level level 

1 9 -1 -1 -1 
2 6 +1 -1 -1 
3 8 -1 +1 -1 
4 5 +1 +1 -1 
5 14 -1 -1 +1 
6 17 +1 -1 +1 
7 4 -1 +1 +1 
8 7 +1 +1 +1 
9 13 -1.68 0 0 

10 2 +1.68 0 0 
11 1 0 -1.68 0 
12 16 0 +1.68 0 
13 3 0 0 -1.68 
14 10 0 0 +1.68 
15 15 0 0 0 
16 18 0 0 0 
17 11 0 0 0 
18 12 0 0 0 

aAIso shown is an example of a random experimental order. 

R 2 and Q2 are to 1, the better the model. In many applications, 
a model is considered to be excellent if R 2 and Q2 exceed 0.9. 

R2 = [Y~Ycorr 2 -  ]~(Yobs- Ycalc)2]/Y~Ycorr 2 [2] 

Q2 = [,y, Ycorr 2 - ]~(Yobs- Ycv)2l/Y~Ycorr 2 [31 

Ycorr = Yobs - Ymean [4] 

The predictive capacity of a model also can be confirmed 
by testing the model on an external validation set. A valida- 
tion set consists of experimental points that are not included 
in the model estimation. The detergency response surface 
models were confirmed with such external validation sets. 

The noncoded variable settings at each design level in the 
detergency experiments with surfactant numbers 5, 8, 9, 11, 
18, 30, and 31 were reported previously (1,2). Two or three in- 
vestigations per surfactant have been performed, each includ- 
ing a saturated design of 18 washing experiments, and differ- 
ing in the variable settings of the designs. The investigations 
denoted as F1 here were reported previously (1). In these F1 
designs, the surfactant concentration and washing temperature 
were varied according to surfactant-specific properties, the 
critical micellar concentration (CMC), and the cloud point 
(CP). The time interval was the same for all surfactants. The 
concept of spanning the concentration according to the CMC 
was not used in investigations F2 and F3 (2). Instead, the con- 
centrations were set at the same level for all surfactants. 

The noncoded variable settings in the detergency experi- 
ments with surfactants number 2, 33, and 39 are shown in 
Table 4. The layout of the investigation called F I '  was in ac- 
cordance with the F1 investigation, and F3' was made in the 
same manner as F3. 

For the QSER models, there was no design behind the 
choice of included surfactants; therefore, MLR was less suit- 
able for the RSM estimations. Instead, PLS was utilized. PLS 
is a regression method, which here looks for the connection 
between the response, y (here the properties at the edge of the 
detergency effect plateau or the regression coefficients), and 
the physicochemical properties, the X matrix. The connection 
between the y vector and the X matrix is the latent structure 
of the data, also called the latent variables (A) or X scores, and 
are denoted t a (a = 1, 2 . . . . .  A ). These scores are linear combi- 
nations of the original variables (here x l, x 2 ..... x~), with the 
coefficient weights W (Wl, ~, W2a . . . . .  Wka a = 1, 2 . . . . .  A )  (9). 
When the latent variables are estimated, both the X matrix and 
y vector are taken into account at the same time (y can be a 
matrix as well, if several responses are evaluated at the same 
time) to obtain maximal correlation between X and y. Further, 
in PLS it is common to mean-center and auto-scale the re- 
sponse vector and X matrix prior to the calculations. 

The estimated regression coefficients (b) are a function of 
W and P and C (Eq. 5), where C is the weight of the response 
and P (loadings) describes the relationship between the 
variables: 

b = W ( P ' W ) - I c  ' [5] 
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TABLE 4 
The Variable Settings at Each Design Level for Each Surfactant in Investigations FI' and F3' 

Number 2 Number 33 Number 39 

Design Time a Concentration Temperature Concentration Temperature 
level (rain) [Iog(mM)] (~ [tog(mM)] (~ 

Concentration Temperature 
[Iog(mM)] (~ 

FI' 
- I  .68 1.6 -1.54 27.2 -1.88 31.2 
-1 5 -1.10 34 -1.43 38 
0 10 -0.45 44 -0.78 48 
+1 15 0.20 54 -0.13 58 
+1,68 18.4 0.64 60.8 0.31 64.8 

Number 2 

Design Concentrationb Time Temperature 
level [Iog(mM)] (rain) (~ 

-1.51 19.2 
-1.07 26 
-0.42 36 

0.23 46 
0.67 52,8 

Number 33 Number 39 

Temperature Temperature 
(~ (~ 

F3' 
-1.68 -1.14 1.6 37.2 41.2 29.2 
-1 -0.70 5 44 48 36 
0 -0.05 10 54 58 46 
+1 0.60 15 64 68 56 
+1.68 1.05 18.4 70.8 74.8 62.8 

aThe same time settings are used for all surfactants in the FI' and F3' series. 
bThe same concentration is used for all surfactants in the F3' series. 

The variables in X do not have to be independent of each other 
(orthogonal) when PLS is utilized. Instead, they can be 
collinear, that is, contain partly the same information. Because 
the PLS extracts the latent structure in the data, and these la- 
tent structures have the character of weighted averages, the es- 
timates of these latent structures will be more precise the more 
colliuear variables are included in the calculations, in the same 
way as a mean value will be more accurately and precisely de- 
termined the more measurements have been made (10). 

The same is valid here as in the case for modeling with 
MLR. To be useful the model has to have a good predictive 
capacity (Q2). A model with a mediocre Q2 can still be useful 
but not for prediction of the outcome of a new experiment, 
nor for prediction of the activity of a new, untested com- 
pound. Instead, it can be used to give hints at how to perform 
the next experiments in the search for optima, or what the 
characteristics ought to be for a compound if better perfor- 
mance should be obtained. 

It is always important to remember that the models ob- 
tained are local. For instance, a model describing a perfor- 
mance as a function of some experimental variables (here de- 
tergency models) can rarely be used to predict responses for 
variable settings far outside the model domain. The intention 
of covering all possibilities with the use of too-large variable 
ranges for the model estimation is not good either. This might 
result in areas with different mechanisms being included in 
the same model. 

When estimating QSER models, it is important that the in- 
cluded chemicals are similar, but it is also important that they 
are dissimilar enough to cause a variation in response/activ- 
ity, otherwise it will be impossible to estimate a model (11). 
The RSM calculations were made with the computer pro- 
grams MODDE 2.1 (MLR) and SIMCA 2.1 (PLS). Both pro- 
grams are available from Umetri AB (Ume~, Sweden). 

RESULTS 

Detergency experiments. The detergency effect in each wash- 
ing experiment and the RSM model calculations for surfac- 
tants numbers 5, 8, 9, 11, 30, and 31 are reported elsewhere 
(1,2). Data from the investigations with surfactants numbers 
2, 33, and 39 are shown in Table 5. The detergency effects re- 
ported are mean values of four replicates. 

TABLE 5 
The Detergency Effect in Each Experimental Point in Investigations 
FI' and F3" a 

Mean detergency effect (%) 

Trial FI' F3' 

number No. 2 No. 33 No. 39 No. 2 No. 33 No. 39 

1 15.2 12.1 13.4 50.9 64.1 23.8 
2 65.4 68.8 59.7 77.3 79.2 72.0 
3 12.4 5.6 16.7 60.2 68.2 26.3 
4 72.5 74.0 66.1 80.2 82.5 76.9 
5 13.3 11.8 13.1 54.5 69.1 32.1 
6 75.3 74.3 73.4 81.3 83.6 80.7 
7 19.1 9.0 24.4 64.1 75.7 45.5 
8 81.9 78.8 79.0 83.7 87,3 85.2 
9 15.9 16.4 14.7 16.0 35.9 19.7 

10 70.7 77.1 74.4 81.3 84.0 80.6 
11 45.2 45.2 38.0 65.3 72.3 61.7 
12 71.7 63.0 50.5 83.7 84.9 80.3 
13 48.1 51.5 31.0 70.9 75.6 63.7 
14 71.2 66.2 64.5 84.1 86.0 82.6 
15 67.7 61.9 51.4 79.5 82.7 75.7 
16 66.8 58.6 55.0 80.2 81.2 74.5 
1 7 66.0 60.6 54.5 80.5 80.9 72.9 
18 66.2 58.6 53.3 81.2 79.3 76.5 

aThe reported data are mean values of four replicates. 
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TABLE 6 
Magnitude of the Multiple Linear Regression Coefficients and Their Upper and Lower 95% Confidence Limits (presented per surfactant) a 
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FI '  F3' 

Number 2 Number 33 Number 39 Number 2 Number 33 Number 39 

Coeff. Limits Coeff. Limits Coeff. Limits Coeff. Limits Coeff. Limits Coeff. Limits 
Coeff. value (• value (• value (• value (_+) value (• value (• 

b 0 66.7 2.4 59.2 1.9 51.8 2.3 80.2 1.8 80.9 1.3 75.3 

b 1 29.5 1.6 32.7 1.5 26.5 1.9 14.8 1.2 10.0 1.1 22.1 
b 2 4.5 1.3 2.2 1.3 3.2 1.6 4.0 1.2 2.8 1.1 3.8 
b 3 4.6 1.3 2.8 1.3 6.9 1.6 2.7 1.2 2.9 1.1 5.2 

b l l  -16 .4  1.7 -14.1 1.7 -7 .3  2.1 -10 .5  1.2 -6 .8  1.1 -11 .4  
b22 -3 .0  1.4 -2 .3  1.3 -2 .4  1.6 -1 .3 1.2 - -  - -  -3 .3  
b33 -2 .6  1.4 . . . . . . . . .  2.5 

b12 - -  - -  2.4 1.6 - -  - -  -1 .7  1.6 - -  - -  
b13 1.8 1.7 . . . . . . . .  

b 2 3  . . . . . . . . . . .  

Q2 0.95 0.96 0.92 0.92 0.86 0.91 
RSD 4.8 4.7 5.9 4.5 4.1' 6.4 

3.2 

t .7  
1.7 
1.7 

1.8 
1.8 
1.8 

_ _  m 

aOnly coefficients (coeff.) significantly different from zero are shown. Also shown is the residual standard deviation (RSD) and the predictive capacity (Q2) 
for each model. The influence of the surfactant concentration is shown by b 1, the washing time by b2, and the washing temperature by b 3. The quadratic 
terms (b 11, b22, b33) reveal whether any of the variables give a maximum/minimum in the response, and the cross-terms (812, 813, b23) indicate if there is an 
interaction between the examined variables. 

The estimated MLR coefficients for each detergency 
model for surfactants numbers 2, 33, and 39 are shown in 
Table 6, together with their upper and lower 95% confidence 
limits. Also shown is the predictive capacity (Q2) for each 
model and their residual SD. The MLR calculations were not 
made on the mean responses reported in Table 5 but on all 
replicates. This gives 72 responses per surfactant per investi- 
gation. 

The results from the F I '  and F3' investigations shown in 
Table 5 were combined, and a PLS model was estimated for 
each of surfactants numbers 2, 33, and 39. These models were 
derived in the same way as those for surfactants numbers 5, 8, 
9, 11, 18, 30, and 31 (2). The surfactant concentration, wash- 
ing time, washing temperature, amount of nonpolar soil be- 
fore washing and the quadratic terms in the three former pa- 
rameters were used as X variables. The response (detergency 
effect) was logit-transformed, and the surfactant concentration 
was expressed on a log scale. The predictive capacity (Q2) and 
explained variance of Y (R~) are shown in Table 7. 

The estimated PLS models can be used to make contour 
plots of the response as a function of, for example, the sur- 
factant concentration and washing temperature. Such a plot is 
shown for surfactant number 5 in Figure 2. A maximal deter- 
gency effect for this surfactant is found at a concentration of 
approximately 100.63 mM and a washing temperature of about 
56~ The surfactant concentration is on a log-scale. The de- 
tergency effect vs. concentration of the same surfactant is 
shown in Figure 3. In this figure, the concentration is in mM 
units, and it shows that there is a plateau in the detergency ef- 
fect. For surfactant number 5, this plateau is reached at a sur- 
factant concentration of 1.6 mM, which is far above the CMC 

(=0.013 mM). In the plateau region, even a large increase in 
surfactant concentration has little influence on the detergency 
effect. All examined surfactants show the same behavior. 

Prediction of the optimal detergency conditions. The 
start/edge of the plateau was defined as the point where the 
derivative of the detergency effect/surfactant concentration 
curve equalled 1:0.5 (%/mM) and the derivative of the deter- 
gency effect/washing temperature equalled 1:5 (%/C) at a 
washing time of 15 min. Table 8 shows the detergency effects 
(edge detergency) at this point for surfactants numbers 2, 5, 
8, 9, 11, 18, 30, 31, 33, and 39, and the surfactant concentra- 
tions (edge concentration) and washing temperatures (edge 
temperature) where this plateau edge is reached. 

TABLE 7 
The Explained Variance in Y (R2y), the Predictive Capacity (Q2), 
and the Number of Latent Variables (A) Significant 
According to Cross Validation for Each Partial Least 
Squares Surfactant Detergency Effect Model 
Surfactant Included Excluded 
number R 2 Q2 A experiments a experiments 

2 0.95 0.87 2 34 1 (F1 ') 9(F1 ") 
5 0.97 0.93 2 51 9(F1) 
8 0.95 0.90 2 52 1 (F1) 9(F1 ) 
9 0.96 0.91 3 54 - -  

11 0.98 0.96 2 51 9(F1 ) 9(F3) 
18 0.72 0.63 1 36 - -  
30 0.97 0.94 3 54 - -  
31 0.98 0.92 2 34 9(F1) 9(F3) 
33 0.93 0.86 2 35 9(F1 ') 
39 0.96 0.91 2 35 9(F1 ') 

aEach is a mean value of four replicates. 
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FIG. 2. A contour plot of the detergency effect of surfactant number 5 
as a function of surfactant concentration [Iog(mM)] and washing tem- 
perature. 

The physicochemical data for each surfactant, shown in a 
previous study (5) and Table 1, were used to construct PLS 
models for the detergency effect, the concentration, and wash- 
ing temperature at the plateau edge. The data were mean-cen- 
tered and scaled to unit variance (autoscaling) prior to model 
estimations, and the physicochemical variable critical pack- 
ing parameter (CPP) was excluded from the calculations. 
These models were based on surfactants numbers 2, 5, 8, 9, 
11, 30, 31, and 33. Surfactant number 39 was omitted from 
the calculations and used as a validation object. The predic- 
tive capacity (Q2) and explained variance in Y (R 2) for each 
model is listed in Table 9, and the loading plots (wc plots) for 
all three models are illustrated in Figure 4. The calculated re- 
sponses vs. the observed values for the eight surfactants in 
the models are shown in Figure 5, which also includes results 
for the validation object (no. 39). 

Prediction of the RSM. The MLR coefficients obtained in 
the F3 and F3' investigations were combined with the 
physicochemical data for the surfactants, although the vari- 
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FIG. 3. The detergency effect of surfactant number 5 as a function of 
surfactant concentration (mM). 

TABLE 8 
The Detergency Effect at 15 Minutes and at the Edge 
of the Detergency Effect Plateau, the Surfactant Concentration, 
and the Washing Temperature at the Same Point a 

Edge Edge Edge 
detergency surfactant washing 

Surfactant effect concentration temperature 
number (%) (mM) (~ 

2 86.3 1.4 60 
5 81.8 1.6 48 
8 82.4 1.9 44 
9 81.8 1.5 82 

11 85.4 2.25 54.5 
30 78.8 1.7 48 
31 84.6 2.8 5O 
33 88.9 1 74 
39 85.9 2 67 

aAII as estimated by the individual partial least squares detergency effect 
models for each surfactant. 

able CPP was also excluded from these calculations. A PLS 
model was estimated for each of the MLR coefficients, in- 
cluding eight of the nine surfactants. Q2 and R 2 for the ob- 
tained models are given in Table 10. In these models, the 
physicochemical property with the largest influence on the 
first latent variable was given a scaling weight of twice that 
of the other variables. The latter were scaled to unit variance, 
and all data were mean-centered prior to model estimations. 
The b 2 and b22 coefficient models were the most difficult to 
estimate. When modelling these coefficients, the X block had 
to be expanded with quadratic terms in the physicochemical 
data, and surfactant number 39 had to be excluded from the 
calculations. The b22 (0.088) and b33 (0.696) coefficients for 
surfactant number 33, and b33 (-0.35) for surfactant number 
2 were too small to be significant in the MLR calculations. In 
spite of this, they were included in the model estimations. 

Surfactant number 9 was not included in the PLS model- 
ling of the MLR coefficients. This surfactant could therefore 
be used as a validation object for the models. The predicted 

TABLE 9 
The Explained Variance in Y (R~,) and the Predictive Capacity (Q2) 
of the Partial Least Squares (PLS) Models for the Detergency Effect 
at the Edge of the Detergency Effect Plateau, the Surfactant 
Concentration, and the Washing Temperature at the Same Point a 

Number ~real 
of included (validation 

Model R 2 Q2 A surfactants object) 

Edge 0.9 0.73 1 8 0.74 
detergency effect 

Edge 0.99 0.87 3 8 0.98 
surfactant concentration 

Edge 
washing temperature 

0.95 0.66 2 8 0.99 

aThe number of significant PLS components (A) according to cross validation 
and the number of surfactants included in each model are also reported. Also 
shown is the Q~real for the validation object (surfactants no. 39). 
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Table 10 
The Explained Variance in Y (R~) and the Predictive Capacity ( 5 )  
of the PLS Models for the Multiple Linear Regression Coefficients 
for Investigations F3 and F3 'a 

Number Q~real 
of including X block Upscaled (validation 

Model R~, 02 A surfactants size property object) 

b 0 0.92 0.73 2 8 18 CP 0.96 

b 1 0.9 0.65 1 8 18 CMC 0.97 
b 2 0.99 0.49 3 7 36 redCPP 0.81 
b 3 0.91 0.65 2 8 18 CP 0.85 

bl l  0.66 0.46 1 8 18 HLBD 0.97 
/:)22 0.78 0.49 "I 7 36 MW 0.99 
b33 0.85 0.60 2 8 18 MW 0.99 

a-i-he number of significant PLS components according to cross validation 
and the number of suffactants included in each model are listed. Also shown 
are the number of variables included in the X-block and the physicochemi- 
cal property with a scaling factor twice the others. The Q~eal for the valida- 
tion object (surfactant no. 9) is reported for each coefficient model. See Ta- 
bles 1 and 9 for abbreviations. 

F3 MLR coefficients for surfactant number 9 are reported in 
Table 11, together with the observed ones. In Table ! 2 and 
Figure 6, the observed detergency effects for surfactant 
number 9 in the F3 investigation are shown together with 
those calculated from the PLS-predicted MLR regression co- 
efficients. 

D I S C U S S I O N  

A three-dimensional score plot for principal component 
analysis of the physicochemical data for nonionic surfactants 
is depicted in Figure 7. In previous work, it was shown how 
these surfactants were divided into different subclasses due to 
their position in the score space (7). This division of  the non- 
ionic surfactants was based on the ability to model one of the 
physicochemical properties, the CMC, from the others. Good 
models were obtained within a subclass. This was not true 
when all surfactants were modeled at the same time. This was 
taken as an indication that the properties of the surfactants are 
similar within a subclass. 

TABLE 11 
The MLR Coefficients for Surfactant Number 9 as Predicted by the PLS 
Models in Table 10 Compared to Those Calculated from the F3 
Investigation of the Same Surfactant a 

MLR PLS MLR 
regression predicted calculated 
coefficient coefficient coefficient 

b 0 77.98 75.15 

b 1 13.47 10.60 
b 2 6.96 5.50 
b 3 2.30 3.70 

bll -6 .12 -5 .00 
/)22 -2.10 -2.40 
/933 -0.71 -0.25 

aMLR, multiple linear regression; see Table 9 for other abbreviation. 

TABLE 12 
The Observed Detergency Effect in Each Experimental Point 
for Surfactant Number 9 in Investigation F3, Compared 
to the Responses Calculated with the PLS-Predicted 
MLR Coefficients Shown in Table 11 a 

Observed Predicted 
Experiment detergency detergency Obs - pred 
number (%) (%) (%) 

1 49.6 46.3 3.3 
2 71.0 73.3 -2.3 
3 61.0 60.2 0.8 
4 77.4 87.2 -9.8 
5 52.6 50.9 1.7 
6 79.6 77.9 1.7 
7 70.1 64.8 5.3 
8 81.3 91.8 -10.5 
9 39.8 38.1 1.7 

10 80.9 83.3 -2.4 
11 56.0 60.4 -4.4 
12 79.1 83.7 -4.6 
13 66.2 72.1 -5.9 
14 81.5 79.8 1.7 
15 75.7 78.0 -2.3 
16 78.0 78.0 0.0 
17 75.9 78.0 -2.1 
18 71.3 78.0 -6.7 

aObs, observed; pred, predicted. See Tables 9 and 11 for other abbreviations. 

Prediction of the optimal detergency conditions. Surfac- 
tants numbers 5, 8, 9, 11, 18, 30, and 31, for which the deter- 
gency behavior was examined previously (1,2), all belong to 
subclass 3. Surfactants numbers 2, 33, and 39, presented here, 
belong to subclass 1. It can be seen in Figure 7 that these sur- 
factants are quite closely grouped in the score space, although 
they belong to two different subclasses. Therefore, an attempt 
was made to construct PLS models for the properties at the 
detergency effect plateau, including surfactants from both 
subclasses. 
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FIG. 6. The observed detergency effects of surfactant number 9 in the 
F3 investigation vs. those predicted from the multiple linear regresson 
coefficients estimated by partial least squares models. 
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cipal components from principal component analysis of the physico- 
chemical data for 37 technical nonionic surfactants. The surfactants in- 
cluded in our investigations are outlined. 

When modelling the detergency effect at the edge of the 
detergency plateau and the surfactant concentration and 
washing temperature needed to reach the edge, surfactant 
number 18 deviated strongly�9 This was no surprise because 
number 18 had behaved differently from the other surfactants 
in all investigations. This is further confirmed by Figure 7, 
where number 18 is isolated from the other investigated sur- 
factants in the score space�9 

The influence of the different variables, here the physico- 
chemical properties, on the obtained PLS models is shown by 
the size of the loadings in each PLS dimension. A way to 
summarize the influence of the different properties in a two- 
dimensional model is to plot the loadings of the first PLS di- 
mension (wcl) vs. the loadings of the second dimension 
(wc2). Such a plot is shown in Figure 4 for each of the three 
models. The total influence of a variable is demonstrated by 
its projection down on a line that connects the origin and the 
modeled property (Y) (7). The larger the distance between this 
projection on the line and the origin, the greater the influence 
of the variable in question. In Figure 4, projections are made 
for those variables with the largest influence�9 The influence 
of a variable can be due to a negative correlation (to the left 
in the plot), or to a positive one (to the right in the plot). If the 
correlation is negative, Y will decrease with an increase in the 
variable setting�9 

The optimal goal for a "perfect" surfactant must be to have 
a high detergency effect at the edge of the detergency plateau�9 
The demand might also be to reach this plateau at a low sur- 
factant concentration and at a low washing temperature. Fig- 
ure 4 can give information on how to fulfil these goals. 

The detergency effect at the edge of the detergency 
plateau. According to Figure 4A, the detergency effect at the 
edge of the plateau (edgedeter) is influenced mainly by (in 
order of importance): (i) ( -)  longest carbon chain in the hy- 
drophobic part (redC), (ii) (+) critical packing parameter 
where the branching of the hydrophobic part is taken into ac- 
count (redCPP), (iii) (+) hydrophilic-lipophilic balance 
(HLB) according to Davis (12), (iv) (+) derivative of the CP 
curve (dCP), (v) (-)  relationship between the longest carbon 
chain and the total amount of carbon in the hydrophobic part 
(redC/C), and (vi) (+) amount of nonethoxylated fatty alcohol 
(f-alcohol). The sign within parentheses shows if the property 
in question has a positive or negative correlation to the mod- 
elled property. 

The longest carbon chain in the hydrophobic part of the 
surfactant (redC) should obviously be short to obtain a high 
detergency effect at the edge of the plateau�9 A high value of 
the critical packing parameter (redCPP) has also a positive 
effect on detergency performance, probably as a result of the 
surfactant being able to form micro emulsions�9 A short 
longest carbon chain (redC) will give an increase of redCPP 
and, hence, improve the detergency performance of the sur- 
factant. RedC is influenced by the degree of branching in the 
hydrophobic part. The more branched a surfactant is, the 
lower will redC become for the same number of carbon 
atoms. This means that redCPP is also influenced by the de- 
gree of branching (13), the latter being shown by the variable 
redC/C. The lower this variable becomes, the more branched 
the hydrophobic part of the surfactant, as reflected by its im- 
portance in the model. The more branched the hydrophobic 
part of the surfactant is (low redC/C), the higher the deter- 
gency effect at the plateau, which may be interpreted in terms 
of the ease of forming a microemulsion. This results in the 
soil being more easily incorporated in surfactant aggregates, 
thus conferring a higher detergency performance. 

The presence of nonethoxylated fatty alcohol (f-alcohol) 
also has a positive influence on the detergency performance. 
Israelachvili (13) has pointed out that hydrocarbons present 
in the washing solution increase redCPP. This might be the 
same for the nonethoxylated fatty alcohol present in the sur- 
factant batches used here. The presence of fatty alcohol might 
thus increase redCPP by assisting the surfactant molecules in 
packing at the oil/water interface and, hence, enhance the for- 
mation of microemulsions. This would explain the increase 
of the detergency effect at the edge of the detergency effect 
plateau with an increasing amount of nonethoxylated fatty 
alcohol. 

The positive effect of the HLB, according to Davis (12), is 
more difficult to explain. It shows the HLB in the surfactant 
molecule. The higher this value, the more hydrophilic the 
molecule�9 A high HLB value for a surfactant results in a high 
CP. The latter provides that the surfactant can operate at a 
higher washing temperature, which results in a decreased vis- 
cosity for both the soil and the water�9 This gives an increased 
mobility in the system, and the soil removal process will be 
faster and, hence, more effective�9 The incorporation of the 
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soil into the surfactant aggregates also might be enhanced by 
a lower soil viscosity. The lower the soil viscosity, the more 
flexible are the soil molecules. 

A high value of the transmittance change per degree Cel- 
sius, when measuring the cloud point of a surfactant solution 
(dCP), also has a positive influence on the detergency effect. 
The CP of a surfactant solution is usually a temperature inter- 
val. A high value of dCP indicates that this temperature inter- 
val is narrow. A surfactant that exhibits fast clouding charac- 
teristics is usually considered to have a narrow ethylene oxide 
distribution. The span in the ethylene oxide distribution for 
the surfactants examined here is shown in the physicochemi- 
cal properties w33EO and w66EO (5). The larger these fig- 
ures are, the broader the ethylene oxide distribution. If the 
property dCP is modeled from the other physicochemical 
properties, there is almost no influence from w33EO and 
w66EO on the dCP model. Instead, the most important prop- 
erties turn out to be redC/C, redC, redCPP, and HLB accord- 
ing to Griffin (14). The clouding proceeds more rapidly (high 
dCP) the more branched the hydrophobe, the shorter its 
longest carbon chain, the larger the value of the CPP, and the 
more water-soluble the surfactant. 

Extensive conclusions should not be drawn from this be- 
cause the obtained dCP model has only moderate predictive 
capacity (Q2 = 0.49 and R 2 = 0.77). However, it might be that 
the property dCP indicates the kinetics of the transformation 
of the surfactant aggregates, from micelles to microemulsion, 
at the CP. This transformation should proceed faster and more 
easily with a more flexible system, made from surfactants 
with short, branched hydrophobes. 

The surfactant concentration at the edge of the detergency 
plateau. According to Figure 4B, the surfactant concentration 
at the edge of the detergency plateau (edgeconc) is influenced 
mainly by (in the order of importance): (i) (+) CMC, (ii) (-)  
molecular weight (MW), (iii) ( -)  number of ethylene oxide 
units per hydrophobe (EOw), and (iv) (-)  number of carbon 
atoms in the hydrophobic chain (C). 

The CMC of the surfactant has the largest influence on the 
surfactant concentration needed to reach the detergency ef- 
fect plateau, i.e., the maximal detergency effect. The lower 
the CMC, the less surfactant is needed to reach the edge of 
the detergency plateau. A low CMC is obtained when the hy- 
drophobic part of the surfactant is unbranched or has a small 
portion of branched carbon chains. This is contrary to the re- 
quirements for a high detergency effect at the edge of the de- 
tergency effect plateau. An high CMC can be compensated 
with a high MW, alot of ethylene oxide (high EOw), and a 
large hydrophobic part (high C). The three latter properties 
have a negative influence on the surfactant concentration at 
the edge of the detergency effect plateau, i.e., the higher they 
are, the lower the surfactant concentration. 

We stated that the CMC did not influence the position of 
maximal detergency effect (1). This conclusion was based on 
the fact that when doing a design where the surfactant con- 
centration was spanned according to CMC (investigation F1), 
the optimal detergency conditions were found only for those 

surfactants with a high CMC, i.e., those surfactants examined 
at high concentrations. This was probably a consequence of 
the fact that the high concentration level in the design was set 
to CMC • 20 mM. For those surfactants with low CMC val- 
ues, this gave a too-narrow concentration range in the 
designs. Thus, the estimated models did not reveal any 
maximum in the detergency effect. The designs should prob- 
ably have been made with CMC as low level, but with the 
same step length in mM between low and high levels for all 
surfactants. 

The washing temperature at the edge of the detergency 
plateau. The washing temperature at the edge of the deter- 
gency plateau (edgetemp) is, according to Figure 4C, influ- 
enced mainly by (in the order of importance): (i) ( - )  mole 
ratio between the dominating hydrophobe and the other hy- 
drophobes (rmchain), (ii) (+) CP, and (iii) (+) number of dif- 
ferent carbon chains present in the hydrophobe (chains). 

The more the optimal washing temperature is decreased, 
the more homogeneous the hydrophobic part of the surfactant 
is. Both rmchain and chains point in that direction. The for- 
mer has a negative influence--the higher it becomes (i.e., the 
more dominating one type of hydrophobe is), the lower the 
optimal washing temperature. Variable chains have a positive 
influence, indicating that the lower the number of different 
hydrophobes present, the lower becomes the optimal washing 
temperature. 

The information in the edge detergency effect and edge 
concentration variables can be summarized in an efficiency 
variable. This variable is the ratio between the former two, 
and the higher this ratio becomes, the more efficient the sur- 
factant. This variable can also be well modeled by PLS (R 2 = 
0.97 and Q2 = 0.75, excluding surfactant no. 39) from the 
physicochemical properties of the surfactants. The loading 
plot (wc plot) for this model is shown in Figure 8. To summa- 
rize this figure, one could conclude that an efficient surfac- 
tant should be made from a branched fatty alcohol (low 
redC/C). It should have a lot of ethylene oxide (high EOw), a 
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FIG. 8. The PLS loading plot (wc plot) for the detergency efficiency 
(det/conc). The physicochemical properties of greatest importance for 
the model are outlined. See Figure 4 for abbreviations. 
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high MW, and be hydrophilic (high HLB). The presence of 
nonethoxylated fatty alcohol (f-alcohol) is positive. 

These statements are valid for the group of surfactants 
examined, and the values of the physicochemical properties 
(high or low) should be compared with those of this group. A 
statement that some property should have a high level means 
as high as the highest value within this surfactant group. The 
conclusions made from a model must not be extrapolated 
far outside the physicochemical domain where the model was 
set up. 

Finally, some comments about surfactant number 18, 
which did not subscribe to these models and which exhibited 
a low detergency level relative to the other surfactants (2). If 
number 18 is compared with the "efficient surfactant" de- 
scribed here, only one property agrees: high MW. It has a high 
C, i.e., a large number of  carbon atoms in the hydrophobic 
part, but the chains are unbranched. Due to the long, un- 
branched carbon chain, surfactant number 18 has a low red- 
CPE It has also a low amount of nonethoxylated fatty alcohol 
(low f-alcohol). In combination, these characteristics suggest 
that surfactant number 18 most probably has problems in 
forming microemulsions in the solution. This could explain 
the low detergency effect of surfactant number 18, and the 
impossibility to incorporate it in the models. 

Alluni et al. (15) and SjtistrOm and Eriksson (16) have 
pointed out the importance of using a homogeneous group of 
chemicals when deriving QSAR models. The same is also 
valid here. Surfactant number 18 is obviously too different, 
and thus its performance cannot be modeled in the same way 
as the other surfactants. 

Prediction of the RSM. In modeling the MLR coefficients, 
surfactants from subclasses 1 and 3 were treated simultane- 
ously for the same reasons as mentioned previously for the 
prediction of the properties at the edge of the detergency ef- 
fect plateau. Surfactant number 18 was an outlier in these 
models as well and had to be excluded from all MLR coeffi- 
cient calculations. 

The PLS modeling of the MLR coefficients of the F3 and 
F3" investigations were more difficult than the corresponding 
treatment of the properties at the edge of the detergency ef- 
fect plateau. The reason could be that when modeling the lat- 
ter, several designs were combined and an RSM was obtained 
covering a wide range of detergency effects for each surfac- 
tant. The edge of the detergency effect plateau was well 
within the experimental domain for all examined surfactant 
and could obviously be modeled with good precision. 

When modeling the MLR coefficients, the designs were 
set equally for all surfactants. This resulted in the designs 
covering different parts of the response surfaces because the 
shapes of these models and the position of the detergency ef- 
fect plateaus differed between the surfactants. This could be 
the reason why the PLS models for the MLR coefficients be- 
came acceptable first when the scaling weight of the most im- 
portant physicochemical property of each model was in- 
creased by a factor of two compared with the other variables 
included. 

The usual method of data pretreatment is autoscaling, in 
which all variables are considered to be of  equal importance 
and are scaled to unit variance. If one or more variables are 
suspected to be more important than the rest, these should be 
given a higher scaling weight (7,17). 

b 1 (surfactant concentration). The concentration was 
spanned equally for all surfactants in the F3 and F3' investi- 
gations. This resulted in the designs being situated on differ- 
ent slopes of the concentration-detergency effect gradient. 
The steepness of these slopes depends on the distance from 
the CMC, and b I describes this gradient. This explains the 
strong influence of CMC on the b I modeling, and also the 
positive effect when the PLS weight of the CMC is scaled up 
by a factor of two. 

b o (constant) b 3 (washing temperature). The temperature 
was spanned according to CP for each surfactant in the same 
investigations. The CP used was that of lw% solution of sur- 
factant in water. This method of spanning the temperature in 
the designs could be a reason why the models of  the MLR 
constant (b0) and the temperature effect (b3) are strongly re- 
lated to CP. The best models for these coefficients were ob- 
tained when the PLS weight of CP was multiplied by a factor 
of two. 

b 2 (washing time) bll, b22, b33 (quadratic effects). The 
models for the other coefficients are less easily explained, but 
the results are the same. An increase of the weight by a factor 
two of the property with the largest influence in the first la- 
tent variable gives models with higher Q2, compared with 
those where all properties have the same weight. Those 
physicochemical properties whose weights were increased in 
modeling of the MLR coefficients are the same as those found 
to be the most important in modeling of the properties at the 
edge of the detergency effect plateau. 

Surfactant number 9 was used as validation object. Even 
though the MLR coefficient models in some cases had quite 
low Q2, the predicted MLR coefficients for surfactant number 
9 are quite close to those calculated from MLR in the F3 in- 
vestigation. The coefficient with the largest discrepancy is b I. 

The predicted MLR coefficients for surfactant number 9 
were used to estimate the detergency effect in the experimen- 
tal points in the F3 investigation. In Table 11, these are com- 
pared with the observed detergency effects. The differences 
between the predicted and observed detergency effects are 
less than 5% for all but three points. For the latter points, the 
differences were 7-8%. These figures can be compared with 
the spread in the central points, which were made with the 
same variable settings, and these experiments use an estimate 
of the experimental variability. Such variability is due to un- 
controlled circumstances and will indicate whether an ob- 
tained difference is significant or not. For the F3 washing ex- 
periments with surfactant number 9, the central points varied 
between 71.3 and 78% in detergency effect. 

A true predictive capacity 2 (Qreal) also can be calculated 
when the predicted and observed detergency effects are com- 
pared for surfactant number 9 in the F3 investigation. This 
Q2ea 1 equals 0.88. The cross validation Q2 for the F3 investi- 
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gation with surfactant number 9 was 0.93. The former in- 
volves seven different PLS models, each predicting one of  the 
MLR coefficients. With this in mind, the difference between 
the two Q2 is quite acceptable. 

Some conclusions about PLS modeling of  MLR coeffi- 
cients can be made. The individual models might be improved 
if the designs spanned equivalent parts of  the response sur- 
faces. This could probably be done if the surfactant concen- 
tration was spanned individually with the concentration at the 
detergency effect plateau as a base, instead of  the same span 
for all. Another alternative is, as mentioned previously, to set 
the low design level equal to CMC and have the same 
steplength in mM for all surfactants. The temperature in such 
designs should probably have the washing temperature at the 
detergency effect plateau as a base instead of  the CP of  I w% 
solution. 

Finally, some remarks on why the physicochemical prop- 
erty CPP was excluded from the model calculations. This pa- 
rameter was defined by Israelachvili (18) and describes how 
the surfactant molecules pack themselves into micelles. In the 
original definition, there was no account taken for the branch- 
ing of  the hydrophobic part of  the molecule. The importance 
of  branching was stated in the second edition of  the book (13). 
A means to estimate the CPP, when branching of  the hy- 
drophobic part of  the surfactant is taken into account, is red- 
CPP (5). The conclusion is that CPP, as originally defined, has 
no physical meaning when branched hydrophobes are used, 
and it was therefore excluded from the calculations. 
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